Why FOCUS on Faeces!

Wednesday 20th May 2009

Dr David S Sanders
Consultant Gastroenterologist & Honorary Reader, Royal Hallamshire Hospital & University of Sheffield
Conflicts of Interest
I have received grants, honorariums and consultancy fees from many companies:

- Novartis
- Solvay
- Genzyme
- GE Healthcare
- Oxford Outcomes
- Shire
- Astra Zeneca
- TechLab

I deserved them all!
‘The art of stool gazing is dead!’
Why FOCUS on faeces?

- Logical choice for non-invasive tests of gastrointestinal diseases

Examples include:

- Faecal pancreatic elastase
- Faecal lactoferrin
- Faecal occult blood
- Faecal Tumor M2-PK
- Faecal C. difficile
- Faecal H. pylori
Problems in pancreatology

- Pancreatic imaging is not adequate?!
 poor sensitivity, ‘damage’ tests not function

- EUS:
 invasive and time consuming but therapeutic potential

- Function testing:
 convenience, patient preference, sensitivity and specificity
Faecal pancreatic elastase-1

Proteolytic enzyme (28kD)

Initially identified as protease E and confirmed as elastase-1 in stool
~ 6% of pancreatic enzyme

Binds to bile salts & not degraded
Low in dilute specimens (lyophilize/centrifuge/dry)
Not affected by enzyme therapy
Identified using ELISA test

Intra-assay variation 5.8 – 6.4%
Inter-assay variation 7.7 – 8.8%
Sandwich ELISA for Pancreatic Elastase 1
(Enzyme Linked ImmunoSorbent Assay)

Monoclonal antibody to human pancreatic elastase 1 (E1)

Human pancreatic elastase 1 (antigen) from faecal sample or standards

2nd monoclonal antibody to E1, biotinylated (anti E1-bio) conjugated to Peroxidase-streptavidin

Peroxidase oxidises the ABTS substrate, oxidation product is dark green

Concentration of oxidised ABTS is then determined photometrically (405nm)
Sensitivity of faecal pancreatic elastase-1 versus other tests for recognising exocrine pancreatic insufficiency (EPI)

- In severe insufficiency = 100%
- In moderate insufficiency = 89 – 100%
- In mild insufficiency = 33 – 65%

Coeliac disease

- This association was first reported in 1957\(^1\)
- Validated using a variety of direct and indirect tests of pancreatic function
- Assumption that diarrhoea = gluten exposure

Dreiling DA. *J Mt Sinai Hosp NY* 1957;24:243-50

Mechanisms:
- Autoimmune phenomenon
- Impaired CCK release
- Impaired Plasma Peptide YY release
- Malnutrition
- Subclinical pancreatitis

Dimagno EP et al *Gastroenterology* 1972
Deprez P et al *Reg Peptides* 2002
Work Done in Sheffield!

Is exocrine pancreatic insufficiency in adult coeliac disease a cause of persisting symptoms?

Design: cross-sectional

Subgrouped:

- 1) New CD (<6 months) – Group A
- 2) Asymptomatic (On GFD)- Group B
- 3) Ongoing GI symptoms (On GFD) – Group C
- 4) Controls – Group D
p <= 0.0001
Response to therapy

Number of bowel motions per day before and after treatment

* p<0.0001
Summary of data on exocrine pancreatic insufficiency and coeliac disease

- N=259
- 20/66 had low Fel-1 (30%)
- Stool frequency reduced but no changes in weight
- Creon initially at 10,000 units tds then titrated
- Treating those with low Fel-1 leads to significant improvement in ~ 90% cases (p<0.001)

PATHOPHYSIOLOGY

GENETIC FACTORS

VISCERAL HYPERSENSITIVITY

CEREBRAL ABNORMALITIES

AUTONOMIC REACTIVITY

GASTROINTESTINAL INFECTION

IRRITABLE BOWEL SYNDROME

EFFECT OF MOOD ON GI FUNCTION

ABNORMAL ILLNESS BEHAVIOUR

CHILDHOOD EXPERIENCES

PSYCHOLOGICAL MORBIDITY
Patients and methods:

403 consecutive patients were referred to our unit over an 18 month period who met the Rome II criteria for D-IBS. Participants had baseline stool frequency and stool consistency recorded along with demographics and weight. Participants were then investigated as per BSG IBS guidelines (2000).

A stool sample was provided and faecal elastase-1 (Fel-1) was determined.

Those patients with a Fel-1 level of less than 100 µg/g of stool were offered pancreatic enzyme supplementation in the form of Creon 40,000 units tds.

Age and sex matched D-IBS (therapeutic controls) with a Fel-1 greater than 100 were also offered the same pancreatic enzyme supplementation.

Pancreatic imaging was performed using ultrasound or CT. Patients were reassessed at six weeks. We also assessed Fel-1 in 50 individuals without IBS (prevalence controls).
IBS Data

<table>
<thead>
<tr>
<th>Group</th>
<th>D-IBS</th>
<th>Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fel-1 <100</td>
<td>19 (6.1%)</td>
<td>0 (0%)</td>
</tr>
<tr>
<td>Fel-1 >100</td>
<td>295 (93.9%)</td>
<td>50 (100%)</td>
</tr>
</tbody>
</table>
IBS Data

![Graph showing Fel-1 levels in D-IBS and Controls](image-url)
Pancreatic enzyme supplementation reduced median stool frequency from 6/day to 1.5/day in 18/19 (94.7%) D-IBS with a Fel-1 <100 (p<0.001)

Pancreatic enzyme supplementation reduced median stool frequency in 1/15 (6.7%) D-IBS with Fel-1 >100 (p=0.66)

Leeds JS et al Gut 2007;56:Suppl II A65
What is Faecal Lactoferrin (FEL)?

- Lactoferrin is an iron binding glycoprotein secreted by most mucosal membranes.
- Expressed by activated neutrophils.
- Inflammation in the bowel results in acute phase reaction & migration of leukocytes to the gut.
- Production of large number of proteins detectable in serum and stool.
- A significant rise may occur prior to a flare-up?
- Differentiates IBS from (active) IBD?
- Differentiates active from inactive IBD?

Kane et al Am J Gastro 2003
Faecal lactoferrin publications

<table>
<thead>
<tr>
<th>Author & Year</th>
<th>Number of Patients</th>
<th>Sens</th>
<th>Spec</th>
</tr>
</thead>
<tbody>
<tr>
<td>Walker 2007</td>
<td>148 (IBS n=7)</td>
<td>84%</td>
<td>97%</td>
</tr>
<tr>
<td>Langhorst 2008</td>
<td>140 (IBS n=54)</td>
<td>85%</td>
<td>77%</td>
</tr>
<tr>
<td>Schoepfer 2008</td>
<td>136 (IBS n=30)</td>
<td>87%</td>
<td>96%</td>
</tr>
<tr>
<td>Schroder 2007</td>
<td>88 (IBS n=31)</td>
<td>82%</td>
<td>100%</td>
</tr>
<tr>
<td>Kane 2003</td>
<td>271 (IBS n=31)</td>
<td>90%</td>
<td>100%</td>
</tr>
<tr>
<td>Dai 2007</td>
<td>177 (IBS n=25)</td>
<td>92%</td>
<td>88%</td>
</tr>
<tr>
<td>Silberer 2005</td>
<td>120 (IBS n=40)</td>
<td>AUC 0.69</td>
<td></td>
</tr>
</tbody>
</table>
Sheffield Data

- Patient recruitment over 23 months: Nov 06- Oct 08: 465 patients
- Irritable bowel syndrome n=137
- Ulcerative colitis n=126
- Crohn’s disease n=104
- Healthy volunteers n=98

Sidhu R et al *Gut* 2009;58: Suppl I A108
Modified Harvey Bradshaw Index (HBI)

Can be influenced by subjectivity (2,3) and by non-GI conditions (4)

<table>
<thead>
<tr>
<th>HBI for CD</th>
<th>HBI for UC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1) No of liquid stools/day</td>
<td>1) No of liquid stools/day</td>
</tr>
<tr>
<td>2) Abdominal pain: sum of 7 days ratings
(none,1=mild,2=moderate,3=severe)</td>
<td>2) Abdominal pain: sum of 7 days ratings
(none,1=mild,2=moderate,3=severe)</td>
</tr>
<tr>
<td>3) General well being
(0=very well,1=slightly below par, 2=poor,3=very poor,4=terrible)</td>
<td>3) General well being
(0=very well,1=slightly below par, 2=poor,3=very poor,4=terrible)</td>
</tr>
<tr>
<td>4) Complications</td>
<td>4) Complications</td>
</tr>
<tr>
<td>● Arthritis/arthralgia</td>
<td>● Arthritis/arthralgia</td>
</tr>
<tr>
<td>● Skin/mouth lesions</td>
<td>● Skin/mouth lesions</td>
</tr>
<tr>
<td>● Iritis/uveitis</td>
<td>● Iritis/uveitis</td>
</tr>
<tr>
<td>● Anal fissure,fistula/ perianal abscess</td>
<td>● Anal fissure,fistula/ perianal abscess</td>
</tr>
<tr>
<td>5) Abdominal mass</td>
<td>5) Bleeding per rectum</td>
</tr>
<tr>
<td></td>
<td>(0=none,1=slight,2=moderate,3=severe)</td>
</tr>
</tbody>
</table>
Faecal lactoferrin concentrations in all patients

HV-healthy volunteers
Table: Faecal Lactoferrin (FEL) Concentration

<table>
<thead>
<tr>
<th></th>
<th>UC</th>
<th>Crohn’s</th>
<th>IBS</th>
<th>Healthy controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>No of patients</td>
<td>126</td>
<td>104</td>
<td>137</td>
<td>98</td>
</tr>
<tr>
<td>Mean FEL (±SD)</td>
<td>69.5 (168)</td>
<td>41.4 (139)</td>
<td>1.39 (3.4)</td>
<td>2.4 (7.2)</td>
</tr>
<tr>
<td>Median FEL (± IQ)</td>
<td>6.6 (42)</td>
<td>4 (13)</td>
<td>0 (1.4)</td>
<td>0.5 (2)</td>
</tr>
</tbody>
</table>

FEL concentrations > in IBD patients compared to IBS (p=0.001) and healthy controls (p=0.001)

Comparison between UC & CD groups: p=0.051
Comparison of activity in IBD groups

<table>
<thead>
<tr>
<th></th>
<th>UC (n=126) : No of pts median FEL (IQ)</th>
<th>CD (n=104): no of pts mean FEL (±SD)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Active disease</td>
<td>N=51</td>
<td>N=51</td>
</tr>
<tr>
<td></td>
<td>Median: 26 (102) ug/g</td>
<td>Median: 8.4 (32) ug/g</td>
</tr>
<tr>
<td>Inactive disease</td>
<td>N=75</td>
<td>N=53</td>
</tr>
<tr>
<td></td>
<td>Median: 3 (8.5) ug/g</td>
<td>Median: 1 (6) ug/g</td>
</tr>
<tr>
<td>p value</td>
<td>p<0.001</td>
<td>p=0.002</td>
</tr>
</tbody>
</table>
Quantitative Stool Test – *IBD-SCAN*

<table>
<thead>
<tr>
<th></th>
<th>All IBD (active & inactive) vs IBS & controls</th>
<th>Active IBD vs IBS & controls</th>
<th>Active IBD vs inactive IBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensitivity</td>
<td>44%</td>
<td>67% (CD 60%, UC 79%)</td>
<td>67%</td>
</tr>
<tr>
<td>Specificity</td>
<td>95.7%</td>
<td>95.7%</td>
<td>74%</td>
</tr>
<tr>
<td>Positive Predictive Value</td>
<td>91%</td>
<td>87%</td>
<td>67%</td>
</tr>
<tr>
<td>Negative Predictive Value</td>
<td>64%</td>
<td>86.8%</td>
<td>74%</td>
</tr>
</tbody>
</table>
ROC: Active IBD vs. IBS and healthy controls

Auc: 0.929
Table 1. Descriptive Statistics for PMN-e, Cal, and LF for Endoscopy-Based Classification of Inflammation for UC, CD, and IBS

<table>
<thead>
<tr>
<th></th>
<th>UC No Inflammation (N = 15)</th>
<th>UC Inflammation (N = 27)</th>
<th>CD No Inflammation (N = 10)</th>
<th>CD Inflammation (N = 33)</th>
<th>IBS No Inflammation (N = 54)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Range</td>
<td>4.34<sup>b</sup> (0–104)</td>
<td>51.1<sup>b</sup> (1–1,669)</td>
<td>6.4±<sup>±</sup> (0.01–103)</td>
<td>55.1<sup>b</sup> (1.3–1,795)</td>
<td>1.82±<sup>±</sup> (0–90)</td>
</tr>
<tr>
<td>Cal</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Range</td>
<td>34.5<sup>b,±</sup> (5.0–134)</td>
<td>108.6<sup>b</sup> (8.7–311)</td>
<td>11.2<sup>b</sup> (0–168)</td>
<td>105.0<sup>b</sup> (12.4–347)</td>
<td>7.1±<sup>±</sup> (0–77)</td>
</tr>
<tr>
<td>PMN-e</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Range</td>
<td>0.035±<sup>±</sup> (0–1.3)</td>
<td>0.18<sup>±</sup> (0.01–0.81)</td>
<td>0.03<sup>a</sup> (0–0.48)</td>
<td>0.12<sup>a</sup> (0.01–1.04)</td>
<td>0.02±<sup>±</sup> (0–0.3)</td>
</tr>
<tr>
<td>CRP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Range</td>
<td>0.20<sup>a</sup> (0–2.9)</td>
<td>0.70<sup>a</sup> (0–3.9)</td>
<td>0.45 (0–3.2)</td>
<td>0.9 (0–13.7)</td>
<td>0.20±<sup>±</sup> (0–1.2)</td>
</tr>
<tr>
<td>CDAI/CDAI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median Range</td>
<td>2.0<sup>b</sup> (0–5)</td>
<td>7.0<sup>b</sup> (3–13)</td>
<td>76.0 (7–132)</td>
<td>98.0 (5–237)</td>
<td></td>
</tr>
</tbody>
</table>

Inflammation was defined as endoscopic score of ≥1; no inflammation was defined as endoscopic score = 0.

Data are shown as µg/mL. PMN-e = polymorphonuclear-elastase; Cal = calprotectin; LF = lactoferrin. (Published cutoffs: ≥0.062 µg/mL for PMN-e, >6 µg/mL for Cal, >7.25 µg/mL for LF).

^{a,b} Letters indicate significant differences between inflamed and noninflamed patients (Mann-Whitney tests: ^aP < 0.05; ^bP < 0.01).

[±] For all indices, IBS patients had significantly lower scores than UC or CD patients with endoscopic inflammation (all P < 0.001, Mann-Whitney tests).

^{Î±,Î±} IBS patients had significantly lower scores than UC without endoscopic inflammation (for Cal P < 0.01, for PMN-e P < 0.05) and CD without inflammation (for LF P < 0.05) (all Mann-Whitney tests).
Conclusions

Faecal elastase:
- Established first-line test for exocrine pancreatic insufficiency in chronic pancreatitis and cystic fibrosis patients
- Has an evolving role in coeliac patients with persisting symptoms
- In due course it may become an established test in the first line investigation of irritable bowel syndrome (IBS)
- Further research/work is required in the areas of inflammatory bowel disease (IBD), diabetes and alcohol related liver disease to establish its clinical utility in these patient groups

Faecal Lactoferrin:
- Is an inexpensive and non invasive test that can provide the clinician with a marker to differentiate between IBD and IBS
- FEL can also be used as an adjunct to blood parameters and clinical symptoms to determine IBD patients who have ongoing inflammation
- Faecal lactoferrin may help stratify patients with GI symptoms into those who do /don't require endoscopic investigations (work ongoing)
Thank you and Questions!